Wednesday, April 13, 2011

NETWORKING

NETWORKING

A computer network, often simply referred to as a network, is a collection of computers and devices interconnected by communications channels that facilitate communications among users and allows users to share resources. Networks may be classified according to a wide variety of characteristics. A computer network allows sharing of resources and information among interconnected devices
Early networks of communicating computers included the military radar system Semi-Automatic Ground Environment (SAGE) and its relative the commercial airline reservation system Semi-Automatic Business Research Environment (SABRE), starting in the late 1950s.
In the 1960s, the Advanced Research Projects Agency (ARPA) started funding the design of the Advanced Research Projects Agency Network (ARPANET) for the United States Department of Defense. Development of the network began in 1969, based on designs developed during the 1960s.[3] The ARPANET evolved into the modern Internet.
Purpose
Computer networks can be used for a variety of purposes:
  • Facilitating communications. Using a network, people can communicate efficiently and easily via email, instant messaging, chat rooms, telephone, video telephone calls, and video conferencing.
  • Sharing hardware. In a networked environment, each computer on a network may access and use hardware resources on the network, such as printing a document on a shared network printer.
  • Sharing files, data, and information. In a network environment, authorized user may access data and information stored on other computers on the network. The capability of providing access to data and information on shared storage devices is an important feature of many networks.
  • Sharing software. Users connected to a network may run application programs on remote computers.
  • Information preservation.
  • Security.

Network classification
The following list presents categories used for classifying networks.
 Connection method
Computer networks can be classified according to the hardware and software technology that is used to interconnect the individual devices in the network, such as optical fiber, Ethernet, wireless LAN, power line communication.
 Wired technologies
  • Twisted pair wire is the most widely used medium for telecommunication. Twisted-pair cabling consist of copper wires that are twisted into pairs. Ordinary telephone wires consist of two insulated copper wires twisted into pairs. Computer networking cabling consist of 4 pairs of copper cabling that can be utilized for both voice and data transmission. The use of two wires twisted together helps to reduce crosstalk and electromagnetic induction. The transmission speed ranges from 2 million bits per second to 100 million bits per second. Twisted pair cabling comes in two forms which are Unshielded Twisted Pair (UTP) and Shielded twisted-pair (STP) which are rated in categories which are manufactured in different increments for various scenarios.
  • Coaxial cable is widely used for cable television systems, office buildings, and other work-sites for local area networks. The cables consist of copper or aluminum wire wrapped with insulating layer typically of a flexible material with a high dielectric constant, all of which are surrounded by a conductive layer. The layers of insulation help minimize interference and distortion. Transmission speed range from 200 million to more than 500 million bits per second.
  • Optical fiber cable consists of one or more filaments of glass fiber wrapped in protective layers. It transmits light which can travel over extended distances. Fiber-optic cables are not affected by electromagnetic radiation. Transmission speed may reach trillions of bits per second. The transmission speed of fiber optics is hundreds of times faster than for coaxial cables and thousands of times faster than a twisted-pair wire.
Wireless technologies
  • Terrestrial microwave – Terrestrial microwaves use Earth-based transmitter and receiver. The equipment looks similar to satellite dishes. Terrestrial microwaves use low-gigahertz range, which limits all communications to line-of-sight. Path between relay stations spaced approx, 30 miles apart. Microwave antennas are usually placed on top of buildings, towers, hills, and mountain peaks.
  • Communications satellites – The satellites use microwave radio as their telecommunications medium which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically 22,000 miles (for geosynchronous satellites) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
  • Cellular and PCS systems – Use several radio communications technologies. The systems are divided to different geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
  • Wireless LANs – Wireless local area network use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. An example of open-standards wireless radio-wave technology is IEEE.
  • Infrared communication , which can transmit signals between devices within small distances not more than 10 meters peer to peer or (face to face) without any body in the line of transmitting.
Functional relationship (network architecture)
Computer networks may be classified according to the functional relationships which exist among the elements of the network, e.g., active networking, client–server, Wireless ad hoc network and peer-to-peer (workgroup) architecture.
Network topology
Computer networks may be classified according to the network topology upon which the network is based, such as bus network, star network, ring network, mesh network. Network topology is the coordination by which devices in the network are arranged in their logical relations to one another, independent of physical arrangement. Even if networked computers are physically placed in a linear arrangement and are connected to a hub, the network has a star topology, rather than a bus topology. In this regard the visual and operational characteristics of a network are distinct. Networks may be classified based on the method of data used to convey the data, these include digital and analog networks.
Types of networks based on physical scope:
Common types of computer networks may be identified by their scale.
Local area network
A local area network (LAN) is a network that connects computers and devices in a limited geographical area such as home, school, computer laboratory, office building, or closely positioned group of buildings. Each computer or device on the network is a node. Current wired LANs are most likely to be based on Ethernet technology, although new standards like ITU-T G.hn also provide a way to create a wired LAN using existing home wires (coaxial cables, phone lines and power lines).
Typical library network, in a branching tree topology and controlled access to resources
Personal area network
A personal area network (PAN) is a computer network used for communication among computer and different information technological devices close to one person. Some examples of devices that are used in a PAN are personal computers, printers, fax machines, telephones, PDAs, scanners, and even video game consoles. A PAN may include wired and wireless devices. The reach of a PAN typically extends to 10 meters.[6] A wired PAN is usually constructed with USB and Firewire connections while technologies such as Bluetooth and infrared communication typically form a wireless PAN.
Home area network
A home area network (HAN) is a residential LAN which is used for communication between digital devices typically deployed in the home, usually a small number of personal computers and accessories, such as printers and mobile computing devices. An important function is the sharing of Internet access, often a broadband service through a CATV or Digital Subscriber Line (DSL) provider. It can also be referred to as an office area network (OAN).
Wide area network
A wide area network (WAN) is a computer network that covers a large geographic area such as a city, country, or spans even intercontinental distances, using a communications channel that combines many types of media such as telephone lines, cables, and air waves. A WAN often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally function at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.
Campus network
A campus network is a computer network made up of an interconnection of local area networks (LAN's) within a limited geographical area. The networking equipments (switches, routers) and transmission media (optical fiber, copper plant, Cat5 cabling etc.) are almost entirely owned (by the campus tenant / owner: an enterprise, university, government etc.).
In the case of a university campus-based campus network, the network is likely to link a variety of campus buildings including; academic departments, the university library and student residence halls.
Metropolitan area network
A Metropolitan area network is a large computer network that usually spans a city or a large campus.
Sample EPN made of Frame relay WAN connections and dialup remote access.
Sample VPN used to interconnect 3 offices and remote users
Enterprise private network
An enterprise private network is a network build by an enterprise to interconnect various company sites, e.g., production sites, head offices, remote offices, shops, in order to share computer resources.
Virtual private network
A virtual private network (VPN) is a computer network in which some of the links between nodes are carried by open connections or virtual circuits in some larger network (e.g., the Internet) instead of by physical wires. The data link layer protocols of the virtual network are said to be tunneled through the larger network when this is the case. One common application is secure communications through the public Internet, but a VPN need not have explicit security features, such as authentication or content encryption. VPNs, for example, can be used to separate the traffic of different user communities over an underlying network with strong security features.
VPN may have best-effort performance, or may have a defined service level agreement (SLA) between the VPN customer and the VPN service provider. Generally, a VPN has a topology more complex than point-to-point.
Inter-network
An inter-network is the connection of two or more private computer networks via a common routing technology (OSI Layer 3) using routers. The Internet is an aggregation of many inter-networks; hence its name was shortened to Internet.
Backbone network
A Backbone network (BBN): A backbone network or network backbone is part of a computer network infrastructure that interconnects various pieces of network, providing a path for the exchange of information between different LANs or sub-networks. A backbone can tie together diverse networks in the same building, in different buildings in a campus environment, or over wide areas. Normally, the backbone's capacity is greater than the networks connected to it.
    A large corporation that has many locations may have a backbone network that ties all of the locations together, for example, if a server cluster needs to be accessed by different departments of a company that are located at different geographical locations. The pieces of the network connections (for example: Ethernet, wireless) that bring these departments together is often mentioned as network backbone. Network congestion is often taken into consideration while designing backbones.
Backbone networks should not be confused with the Internet backbone.
Global area network
A global area network (GAN) is a network used for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is handing off the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial wireless LANs.[7]
Internet
The Internet is a global system of interconnected governmental, academic, corporate, public, and private computer networks. It is based on the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the United States Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW).
Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the Internet Protocol Suite and an addressing system (IP addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the Border Gateway Protocol (BGP), forming a redundant worldwide mesh of transmission paths.
*Intranets and extranets
Intranets and extranets are parts or extensions of a computer network, usually a local area network.
An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.
An extranet is a network that is limited in scope to a single organization or entity and also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities—a company's customers may be given access to some part of its intranet—while at the same time the customers may not be considered trusted from a security standpoint. Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although an extranet cannot consist of a single LAN; it must have at least one connection with an external network.
*Overlay network
An overlay network is a virtual computer network that is built on top of another network. Nodes in the overlay are connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network.
A sample overlay network: IP over SONET over Optical
For example, many peer-to-peer networks are overlay networks because they are organized as nodes of a virtual system of links run on top of the Internet. The Internet was initially built as an overlay on the telephone network .[8]
Overlay networks have been around since the invention of networking when computer systems were connected over telephone lines using modem, before any data network existed.
Nowadays the Internet is the basis for many overlaid networks that can be constructed to permit routing of messages to destinations specified by an IP address. For example, distributed hash tables can be used to route messages to a node having a specific logical address, whose IP address is known in advance.
Overlay networks have also been proposed as a way to improve Internet routing, such as through quality of service guarantees to achieve higher-quality streaming media. Previous proposals such as IntServ, Diff Serv, and IP Multicast have not seen wide acceptance largely because they require modification of all routers in the network. On the other hand, an overlay network can be incrementally deployed on end-hosts running the overlay protocol software, without cooperation from Internet service providers. The overlay has no control over how packets are routed in the underlying network between two overlay nodes, but it can control, for example, the sequence of overlay nodes a message traverses before reaching its destination.
*Basic hardware components
All networks are made up of basic hardware building blocks to interconnect network nodes, such as Network Interface Cards (NICs), Bridges, Hubs, Switches, and Routers. In addition, some method of connecting these building blocks is required, usually in the form of galvanic cable (most commonly Category 5 cable). Less common are microwave links (as in IEEE 802.12) or optical cable ("optical fiber").
*Network interface cards
A network card, network adapter, or NIC (network interface card) is a piece of computer hardware designed to allow computers to communicate over a computer network. It provides physical access to a networking medium and often provides a low-level addressing system through the use of MAC addresses.
Each network interface card has its unique id. This is written on a chip which is mounted on the card.
Repeaters
A repeater is an electronic device that receives a signal, cleans it of unnecessary noise, regenerates it, and retransmits it at a higher power level, or to the other side of an obstruction, so that the signal can cover longer distances without degradation. In most twisted pair Ethernet configurations, repeaters are required for cable that runs longer than 100 meters. A repeater with multiple ports is known as a hub. Repeaters work on the Physical Layer of the OSI model. Repeaters require a small amount of time to regenerate the signal. This can cause a propagation delay which can affect network communication when there are several repeaters in a row. Many network architectures limit the number of repeaters that can be used in a row (e.g. Ethernet's 5-4-3 rule).
Bridges
A network bridge connects multiple network segments at the data link layer (layer 2) of the OSI model. Bridges broadcast to all ports except the port on which the broadcast was received. However, bridges do not promiscuously copy traffic to all ports, as hubs do, but learn which MAC addresses are reachable through specific ports. Once the bridge associates a port and an address, it will send traffic for that address to that port only.
Bridges learn the association of ports and addresses by examining the source address of frames that it sees on various ports. Once a frame arrives through a port, its source address is stored and the bridge assumes that MAC address is associated with that port. The first time that a previously unknown destination address is seen, the bridge will forward the frame to all ports other than the one on which the frame arrived.
Bridges come in three basic types:
  • Local bridges: Directly connect local area networks (LANs)
  • Remote bridges: Can be used to create a wide area network (WAN) link between LANs. Remote bridges, where the connecting link is slower than the end networks, largely have been replaced with routers.
  • Wireless bridges: Can be used to join LANs or connect remote stations to LANs.
*Switches
A network switch is a device that forwards and filters OSI layer 2 datagrams (chunks of data communication) between ports (connected cables) based on the MAC addresses in the packets.[9] A switch is distinct from a hub in that it only forwards the frames to the ports involved in the communication rather than all ports connected. A switch breaks the collision domain but represents itself as a broadcast domain. Switches make forwarding decisions of frames on the basis of MAC addresses. A switch normally has numerous ports, facilitating a star topology for devices, and cascading additional switches.[10] Some switches are capable of routing based on Layer 3 addressing or additional logical levels; these are called multi-layer switches. The term switch is used loosely in marketing to encompass devices including routers and bridges, as well as devices that may distribute traffic on load or by application content (e.g., a Web URL identifier).
Routers
A router is an internetworking device that forwards packets between networks by processing information found in the datagram or packet (Internet protocol information from Layer 3 of the OSI Model). In many situations, this information is processed in conjunction with the routing table (also known as forwarding table). Routers use routing tables to determine what interface to forward packets (this can include the "null" also known as the "black hole" interface because data can go into it, however, no further processing is done for said data).
Firewalls
Firewalls are the most important aspect of a network with respect to security. A firewalled system does not need every interaction or data transfer monitored by a human, as automated processes can be set up to assist in rejecting access requests from unsafe sources, and allowing actions from recognized ones. The vital role firewalls play in network security grows in parallel with the constant increase in 'cyber' attacks for the purpose of stealing/corrupting data, planting viruses, etc.


Computer networking

"Datacom" redirects here. Datacom (disambiguation).
Network cards such as this one can transmit and receive data at high rates over various types of network cables. This card is a 'Combo' card which supports three cabling standards.
Computer networking or Data communications (Datacom) is the engineering discipline concerned with the communication between computer systems or devices. A computer network is any set of computers or devices connected to each other with the ability to exchange data.[1] Computer networking is sometimes considered a sub-discipline of telecommunications, computer science, information technology and/or computer engineering since it relies heavily upon the theoretical and practical application of these scientific and engineering disciplines. The three types of networks are: the Internet, the intranet, and the extranet. Examples of different network methods are:
  • Local area network (LAN), which is usually a small network constrained to a small geographic area. An example of a LAN would be a computer network within a building.
  • Metropolitan area network (MAN), which is used for medium size area. Examples for a city or a state.
  • Wide area network (WAN) that is usually a larger network that covers a large geographic area.
  • Wireless LANs and WANs (WLAN & WWAN) are the wireless equivalent of the LAN and WAN.
All networks are interconnected to allow communication with a variety of different kinds of media, including twisted-pair copper wire cable, coaxial cable, optical fiber, power lines and various wireless technologies.[2] The devices can be separated by a few meters (e.g. via Bluetooth) or nearly unlimited distances (e.g. via the interconnections of the Internet). Networking, routers, routing protocols, and networking over the public Internet have their specifications defined in documents called RFCs.


Views of networks

Users and network administrators typically have different views of their networks. Users can share printers and some servers from a workgroup, which usually means they are in the same geographic location and are on the same LAN, whereas a Network Administrator is responsible to keep that network up and running. A community of interest has less of a connection of being in a local area, and should be thought of as a set of arbitrarily located users who share a set of servers , and possibly also communicate via peer-to-peer technologies.
Network administrators can see networks from both physical and logical perspectives. The physical perspective involves geographic locations, physical cabling, and the network elements (e.g., routers, bridges and application layer gateways that interconnect the physical media. Logical networks, called, in the TCP/IP architecture, subnets, map onto one or more physical media. For example, a common practice in a campus of buildings is to make a set of LAN cables in each building appear to be a common subnet, using virtual LAN (VLAN) technology.
Both users and administrators will be aware, to varying extents, of the trust and scope characteristics of a network. Again using TCP/IP architectural terminology, an intranet is a community of interest under private administration usually by an enterprise, and is only accessible by authorized users (e.g. employees).[5] Intranets do not have to be connected to the Internet, but generally have a limited connection. An extranet is an extension of an intranet that allows secure communications to users outside of the intranet (e.g. business partners, customers).
Unofficially, the Internet is the set of users, enterprises, and content providers that are interconnected by Internet Service Providers (ISP). From an engineering viewpoint, the Internet is the set of subnets, and aggregates of subnets, which share the registered IP address space and exchange information about the reachability of those IP addresses using the Border Gateway Protocol. Typically, the human-readable names of servers are translated to IP addresses, transparently to users, via the directory function of the Domain Name System (DNS).
Over the Internet, there can be business-to-business (B2B), business-to-consumer (B2C) and consumer-to-consumer (C2C) communications. Especially when money or sensitive information is exchanged, the communications are apt to be secured by some form of communications security mechanism. Intranets and extranets can be securely superimposed onto the Internet, without any access by general Internet users, using secure Virtual Private Network (VPN) technology.
When used for gaming one computer will need to be the server while the others play through it.

*History of computer networks


Before the advent of computer networks that were based upon some type of telecommunications system, communication between calculation machines and early computers was performed by human users by carrying instructions between them. Many of the social behaviors seen in today's Internet were demonstrably present in the nineteenth century and arguably in even earlier networks using visual signals.
Today, computer networks are the core of modern communication. All modern aspects of the Public Switched Telephone Network (PSTN) are computer-controlled, and telephony increasingly runs over the Internet Protocol, although not necessarily the public Internet. The scope of communication has increased significantly in the past decade, and this boom in communications would not have been possible without the progressively advancing computer network. Computer networks, and the technologies needed to connect and communicate through and between them, continue to drive computer hardware, software, and peripherals industries. This expansion is mirrored by growth in the numbers and types of users of networks from the researcher to the home user.

Networking methods

One way to categorize computer networks is by their geographic scope, although many real-world networks interconnect Local Area Networks (LAN) via Wide Area Networks (WAN) and wireless wide area networks (WWAN). These three (broad) types are:

Local area network (LAN)

Wide area network (WAN)

Wireless networks (WLAN, WWAN)

Network topology

What Networking Isn't

Networking isn't a process of making cold-calls or sending Friend or "Join my Network" requests to people you don't know. It's connecting to people you do know through a valid connection.
What I mean by a valid connection is someone who may be a member of the same professional association, a fellow alumnus of your undergraduate or graduate school (or even high school), or the friend of a friend to whom you were introduced either personally or professionally.
Networking does not have to be a carefully-choreographed process of meeting and greeting people. For some people it's more manageable on an informal basis, but always remember that networking is a two-way street. It must benefit both persons to be most effective, so as you ask your network for help when you are in need, be prepared to return the favor when asked.
We have several articles with Tips on Networking. Once you are comfortable with the general practice, then it is easy to take it online because the same basic principles apply.

How Do to Network on Internet?

The Internet can be a great way to begin those casual relationships that turn into wonderful networking opportunities. Since we aren't face-to-face with the other person, the stress of making these new connections is greatly alleviated, but don't think that it's an easy market out there. It is very important that we begin these relationships in the right way. Since we can't use our voices or body language to express ourselves, we are limited to making sure the words we use and the ways in which they are presented properly represent our intentions.

Advantages of Online Networking

  • There are thousands of discussion groups and community forums covering hundreds of subjects.
  • You can "break the ice" before meeting someone in person.
  • You can listen, engage, or be engaged as you wish. No one can see you sweat, and you don't have to feel like a wallflower since no one can see you standing off by yourself.
  • Many recruiters are lurking the lists to find potential candidates.

Disadvantages

  • Networking online is just as difficult as networking in person! It may actually be even more difficult because you can't establish a true connection online.
  • First impressions count even more. Be very careful with your first public posting.
  • Your online behavior matters more than you think. Don't be a jerk!

Where to Network Online?

This is where discussion boards, social networking sites, and mailing lists come in. Many professionals use these communication mediums for networking, discussing recent developments in their occupation or industry and asking questions of each other. Anyone involved in a job search or career exploration can benefit from following these online, public discussions, learning about current trends and developments and the interests and concerns of those involved.
Discussion Boards are like your office water cooler. Conversations can be highly professional or very informal. Numerous web sites and online services like the Vault.com Career Discussions (select Discussions from the top menu) offer you the opportunity to create your own virtual meeting space.
Social Networking sites are a little different in that they work the "six degrees of separation" concept to the extreme, using the Internet to turn who you are, who you know, and what you know into a monster-sized spider net of connectivity. These include services like Facebook, Linked In and Networking for Professionals. Some may be more casual, while others are focused on professional linkages. We have more information and a list of several of these sites on our page for Networking and Support Groups. Job-Hunt.org has terrific information on using Social Media in Your Job Search.
Mailing Lists are a long-standing communication forum heavily used in academic and research professions. While many now have web interfaces, they still operate via email, meaning you must have a personal email account to participate. To find mailing lists that might be relevant to your industry or profession.

Making Contact

How do you know with whom to connect online?
  • In mailing lists and discussion boards, look for postings by someone who seems to be knowledgeable about the topic being discussed. Note his or her email address at the top, and look for signature information citing their organizational affiliation, position in the organization, and more complete contact information.
  • In a social networking site, limit yourself to contact with whom you can claim a valid (if limited) connection -- you are both former employees of X, you are both graduates of X, you are both members of X association, mailing list, or discussion group. If you cannot make any of these claims but you know someone in their network who is also in your network, ask that person to introduce you.
Once you have identified some persons you want to contact, prepare your initial contact carefully. Be professional and especially polite, and double-check for grammar and spelling errors before sending your message.
1.    Be sure to contact the person directly and not through the list.
2.    Be concise. Identify yourself, state why you are contacting this person, and list some of your interests and where you noticed some correlation with his or her interests as noted in the postings you've read.
3.    Do NOT send this person a copy of your resume. You are networking, trying to establish a relationship that extends far beyond just "please help me find a job." A resume will blow everything to bits at this point. Just relax and let the relationship build to a point where a resume will be requested or you feel comfortable asking for advice on preparation.
4.    Request a follow-up to this email, via phone or email. Give your contact the choice of how to continue.
If you are trying to make a connection through a site such as Facebook or Linked In, I suggest you add a personal message to your request. Again, keep it concise but also cite your connection, such as "I recognize you from last year's alumni gathering at X university. May I add you to my professional network?" This type of introduction and request will garner many more positive responses than the standard "may I add you to my professional network" generated by these services.


No comments:

Post a Comment